RUS  ENG
Full version
JOURNALS // Zapiski Nauchnykh Seminarov POMI // Archive

Zap. Nauchn. Sem. POMI, 2003 Volume 301, Pages 144–171 (Mi znsl943)

This article is cited in 10 papers

On algebras of skew polynomials generated by quadratic homogeneous relations

A. V. Golovashkina, V. M. Maximovb

a Tver State Technical University
b Russian State University for the Humanities

Abstract: We consider algebras, with two generators $a$ and $b$, generated by the quadratic relations $ba=\alpha a^2+\beta ab+\gamma b^2$, where the coefficients $\alpha$, $\beta$, and $\gamma$ belong to an arbitrary field $F$ of characteristics $0$. We find conditions for the algebra to be expressed as a skew polynomial algebra with generator $b$ over the polynomial ring $F[a]$. These conditions are equivalent to the existence of the Poincaré–Birkhoff–Witt basis, i.e., basis of the form $\{a^m,b^n\}$.

UDC: 512.55

Received: 19.08.2003


 English version:
Journal of Mathematical Sciences (New York), 2005, 129:2, 3757–3771

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026