RUS  ENG
Full version
JOURNALS // Zapiski Nauchnykh Seminarov POMI // Archive

Zap. Nauchn. Sem. POMI, 2025 Volume 545, Pages 179–205 (Mi znsl7625)

Entire functions of exponential type in the problem of approximation on disjoint segments

O. V. Silvanovicha, N. A. Shirokovb

a Saint-Petersburg State Mining Institute
b St. Petersburg Department of Steklov Mathematical Institute of Russian Academy of Sciences

Abstract: Let $a_k<b_k<a_{k+1},\ k\in\mathbb{Z},\ I_k=(a_k, b_k),\ J_k=[b_k, a_{k+1}].$ We assume that $|I_k|\asymp |J_k|,\ a_k \xrightarrow [k \to +\infty] \ \infty,\ a_k \xrightarrow [k \to -\infty] \ -\infty$ and $|J_k|\asymp \frac{1}{|a_k|^\alpha},\ |k|\rightarrow\infty$, $\alpha>0$. The distribution of $\{J_k\}$ satisfies some regularity conditions, $ E=\bigcup\limits_{k\in \mathbb{Z}} J_k$. A bounded function $f$ is defined on $E$ and satisfies the $s$-Holder condition, $0<s<1$. We put $l_k=\frac{1}{2}|J_k|$, $\xi_k =\frac{1}{2}(b_k+a_{k+1})$, $ k\in\mathbb{Z}$. The function $\rho_t(x)$ is defined for $x\in J_k$ and $0<t\leqslant 1,\ k\in\mathbb{Z}$, as follows:
\begin{equation}\notag \rho_t(x)=\begin{cases} ( \sqrt{l_k^2-(x-\xi_k)^2}+t)\cdot\dfrac{t}{|I_k|}, 0<t<\frac{1}{2}, t, \frac{1}{2}\leq t\leqslant 1. \end{cases} \end{equation}
We prove the following claim.
Theorem. There is a constant $c_f$ such that an entire function $F_{\sigma}$ can be found for any $\sigma\geq 1$ with
\begin{equation}\notag |F_{\sigma}(z)|\leq c_{F_\sigma}e^{2\sigma|\Im z|},\ z\in \mathbb{C}, \end{equation}

\begin{equation}\notag |f(x)-F_{\sigma}(x)|\leq c_f\rho^s_{\frac{1}{\sigma}}(x),\ x\in E. \end{equation}


Key words and phrases: entire functions of exponential type, approximation, Hölder classes.

UDC: 517.537

Received: 04.08.2025



© Steklov Math. Inst. of RAS, 2026