RUS  ENG
Full version
JOURNALS // Zapiski Nauchnykh Seminarov POMI // Archive

Zap. Nauchn. Sem. POMI, 2025 Volume 545, Pages 145–156 (Mi znsl7622)

Generalization of a theorem of I. I. Privalov

A. S. Kolpakova, N. A. Shirokovb

a Saint Petersburg Electrotechnical University "LETI"
b St. Petersburg Department of Steklov Mathematical Institute of Russian Academy of Sciences

Abstract: Let $E\subset \mathbb{C}$ be a compact set. The set $E$ is called an Ahlfors–David set of dimension $\theta$, $0<\theta<2$, if there exist constants $C_1$, $C_2>0$ such that for any $z\in E$ and arbitrary $r$, $0<r<\mathrm{diam}\, E$, one has
$$ C_1r^{\theta}\leqslant\Lambda_{\theta}(E\cap\overline{B}_r(z))\leqslant C_2r^{\theta}, $$
where $\Lambda_{\theta}(S)$ means the Hausdorff measure of dimension $\theta$ and $\overline{B}_r(z)\overset{\rm def}{=}\{\zeta: \left|\zeta-z\right|\leqslant r\}$.
Let $\Gamma$ be a closed Jordan curve that is an Ahlfors–David set of dimension $1+\alpha,$ $0<\alpha<1,$ which bounds a domain $D$; we put $G=\mathbb{C}\backslash \overline{D}$. We introduce the spaces $H^{\beta}(\overline{D})$ and $H^{\beta}(\overline{G})$ as the spaces of functions $g$ or $h$ analytic respectively in $D$ or $G$, $h(\infty)=0$, and satisfying the $\beta$-Hölder condition in $\overline{D}$ or $\overline{G}$. We denote by $H^{\beta}(\Gamma)$ the space of all complex-valued functions $f$ defined on $\Gamma$ and satisfying the $\beta$-Hölder condition on it. We prove the following result.
Theorem. Assume that $\Gamma$ is a Jordan curve as described above, $\alpha<\beta<1,$ $f\in H^{\beta}(\Gamma).$ Then there exist functions $g\in H^{\beta}(\overline{D})$ and $h \in H^{\beta}(\overline{G})$ such that
$$ f(z)=g(z)+h(z),\ z\in\Gamma. $$


Key words and phrases: analytic functions, Hölder classes, Ahlfors–David sets.

UDC: 517.544

Received: 30.11.2024



© Steklov Math. Inst. of RAS, 2026