RUS  ENG
Full version
JOURNALS // Zapiski Nauchnykh Seminarov POMI // Archive

Zap. Nauchn. Sem. POMI, 2025 Volume 543, Pages 30–42 (Mi znsl7583)

The splitting of the de Rham cohomology of soft function algebras is multiplicative

I. Baskov

St. Petersburg Department of Steklov Mathematical Institute of Russian Academy of Sciences

Abstract: Let $A$ be a real soft function algebra. In [1] we have obtained a canonical splitting $\mathrm{H}^* (\Omega ^\bullet _{A|\mathbb{R}}) \cong \mathrm{H}^* (X,\mathbb{R})\oplus \text{(something)}$ via the canonical maps $\Lambda_A:\mathrm{H} ^* (X,\mathbb{R})\to\mathrm{H} ^* (\Omega ^\bullet _{A|\mathbb{R}})$ and $\Psi_A:\mathrm{H} ^* (\Omega ^\bullet _{A|\mathbb{R}})\to\mathrm{H} ^* (X,\mathbb{R})$. In this paper we prove that these maps are multiplicative.

Key words and phrases: de Rham cohomology of algebras, soft function algebra, canonical splitting.

UDC: 515.142.217

Received: 18.09.2025

Language: English



© Steklov Math. Inst. of RAS, 2026