Abstract:
Let $A$ be a real soft function algebra. In [1] we have obtained a canonical splitting $\mathrm{H}^* (\Omega ^\bullet _{A|\mathbb{R}}) \cong \mathrm{H}^* (X,\mathbb{R})\oplus \text{(something)}$ via the canonical maps $\Lambda_A:\mathrm{H} ^* (X,\mathbb{R})\to\mathrm{H} ^* (\Omega ^\bullet _{A|\mathbb{R}})$ and $\Psi_A:\mathrm{H} ^* (\Omega ^\bullet _{A|\mathbb{R}})\to\mathrm{H} ^* (X,\mathbb{R})$. In this paper we prove that these maps are multiplicative.
Key words and phrases:de Rham cohomology of algebras, soft function algebra, canonical splitting.