RUS  ENG
Full version
JOURNALS // Zapiski Nauchnykh Seminarov POMI // Archive

Zap. Nauchn. Sem. POMI, 2025 Volume 541, Pages 89–101 (Mi znsl7563)

On the absolute continuity of the spectrum of Sturm–Liouville operator with matrix singular coefficients

Ya. I. Granovskiiab, M. M. Malamudc

a Donetsk National Technical University
b Institute of Applied Mathematics and Mechanics, Donetsk
c Saint Petersburg State University

Abstract: In the present work the spectral structure of realizations on the half-line of a matrix three-term Sturm–Liouville operator
\begin{equation*} \mathcal{L}(P,Q,R)y:=R^{-1}(x)\bigl(-(P(x)y')'+Q(x)y\bigr), y=(y_1,\ldots,y_m)^{\top}, \end{equation*}
with singular potential $Q( \cdot ) = Q( \cdot )^*$ on the half-line is investigated. It is shown that under certain conditions on the coefficients $P( \cdot )$ and $R( \cdot )$ depended from the small parameter $\varepsilon$, the Dirichlet realization $L^D$ (and other self-adjoint realizations) in the case of $Q( \cdot )\in W^{-1,1}(\mathbb{R}_+;\mathbb{C}^{m\times m})$ has Lebesgue non-negative spectrum with constant multiplicity $m$.

Key words and phrases: Schrödinger operators, singular potentials, regularization, boundary triplets, Weyl functions, absolutely continuous spectrum.

UDC: 517.984.4

Received: 25.09.2025



© Steklov Math. Inst. of RAS, 2026