RUS  ENG
Full version
JOURNALS // Vestnik Yuzhno-Ural'skogo Gosudarstvennogo Universiteta. Seriya "Matematika. Mekhanika. Fizika" // Archive

Vestn. Yuzhno-Ural. Gos. Un-ta. Ser. Matem. Mekh. Fiz., 2013 Volume 5, Issue 2, Pages 178–179 (Mi vyurm98)

Short communications

Polynomial as a sum of periodic functions

A. Yu. Evnin

South Ural State University

Abstract: It is proved that an arbitrary polynomial of degree $n$ representatives as a sum of periodic functions, the minimum number of terms in this sum is $n+1$.

Keywords: periodic functions; counterexamples in the analysis.

UDC: 517.17:517.51

Received: 30.05.2013



© Steklov Math. Inst. of RAS, 2026