RUS
ENG
Full version
JOURNALS
// Vestnik Yuzhno-Ural'skogo Gosudarstvennogo Universiteta. Seriya "Matematika. Mekhanika. Fizika"
// Archive
Vestn. Yuzhno-Ural. Gos. Un-ta. Ser. Matem. Mekh. Fiz.,
2013
Volume 5,
Issue 2,
Pages
178–179
(Mi vyurm98)
Short communications
Polynomial as a sum of periodic functions
A. Yu. Evnin
South Ural State University
Abstract:
It is proved that an arbitrary polynomial of degree
$n$
representatives as a sum of periodic functions, the minimum number of terms in this sum is
$n+1$
.
Keywords:
periodic functions; counterexamples in the analysis.
UDC:
517.17:517.51
Received:
30.05.2013
Fulltext:
PDF file (1431 kB)
References
©
Steklov Math. Inst. of RAS
, 2026