This article is cited in
1 paper
Mathematics and mechanics
The invertibility of integral operators with homogeneous kernels of compact type on the heisenberg group
V. V. Denisenkoa,
V. M. Deundyakbc a Southern Federal University
b Southern Federal University, Rostov-on-Don
c Specvuzavtomatika Research Institute
Abstract:
Let
$\mathbb{C}^n$
be a
$n$–dimensional complex coordinate space
and let
$\mathbb{R}$ be a set of real numbers.
The Heisenberg group is a set
$\mathbb{H}_{n} = \mathbb{C}^n \times \mathbb{R}$
with the binary operation
\begin{equation*}
(z,a) (w, b) = (z + w, a + b + 2 \mathrm{Im}(z \cdot w)),
\quad
(z,a), (w,b) \in \mathbb{H}_n.
\end{equation*}
The group under consideration is endowed with a family of dilations
\begin{equation*}
\delta_r(z,a) = (r z, r^2 a),
\quad
r \in \mathbb{R}_{+},
\quad
(z,a) \in \mathbb{H}_n,
\end{equation*}
and is equipped with the Koranyi norm
\begin{equation*}
\lVert (z,a) \rVert
=
\left(\lvert z \rvert ^4 + a^2 \right)^{\frac{1}{4}},
\quad
(z,a) \in \mathbb{H}_n.
\end{equation*}
This norm allows us to define the notion of the unit ball on the Heisenberg group
\begin{equation*}
\mathbb{S}_{n} = \left\{ x \in \mathbb{H}_{n} : \: \lVert x \rVert = 1 \right\}.
\end{equation*}
The transformation of Cartesian coordinates on the Heisenberg group
$x \in \mathbb{H}_n \setminus \{ (\mathbf{0}, 0) \}$
to spherical coordinates
$(r,s) \in \mathbb{R}_+ \times \mathbb{S}_n$
is defined by
\begin{equation*}
r = \lVert x \rVert,
\quad
s = \delta_{\lVert x \rVert}^{-1}(x).
\end{equation*}
The function
$k: \mathbb{H}_{n} \times \mathbb{H}_{n} \to \mathbb{C}$
is said to be homogeneous of degree
$m$ if it satisfies the condition of homogeneity
\begin{equation*}
\forall \gamma \in \mathbb{R}_{+},
\quad
\forall x,y \in \mathbb{H}_{n}:
\quad
k(\delta_{\gamma} (x), \delta_{\gamma} (y))
=
\gamma^{m} k(x,y).
\end{equation*}
This paper is concerned with the study of linear integral operators on the Heisenberg group of the form
\begin{equation*}
(K_{k} \, f)(x)
=
\int\limits_{\mathbb{H}_n} k(x,y) \, f(y) \, dy,
\end{equation*}
where function
$k$ is an element of the special Banach space
$\mathcal{M}_{p}(\mathbb{H}_n)$
of homogeneous
$(-2n-2)$ degree functions.
It is claimed that operator under consideration is bounded in the space
$L_p(\mathbb{H}_n)$, where
$1 < p < \infty$.
A new class
$\mathcal{C}_{p}(\mathbb{H}_n) \subset \mathcal{M}_{p}(\mathbb{H}_n)$
of homogeneous kernels of compact type is introduced.
The main object of the research is the unitary Banach algebra
$\mathfrak{V}_{p}^+(\mathbb{H}_n)$
generated by integral operators with
$\mathcal{C}_{p}(\mathbb{H}_n)$
kernels.
It should be pointed out that spherical coordinate system on the Heisenberg group plays a significant role in construction of the
$\mathcal{C}_{p}(\mathbb{H}_n)$ class.
The convolutional representation of the unitary Banach algebra
$\mathfrak{V}_{p}^+(\mathbb{H}_n)$ is constructed using the technique of tensor products.
This representation makes it possible to define the symbol for integral operators in
$\mathfrak{V}_{p}^+(\mathbb{H}_n)$
algebra and formulate the necessary and sufficient conditions for invertibility of these operators in terms of their symbol.
Keywords:
Heisenberg group, linear integral operators, operators with homogeneous kernels, convolutional representation, symbolic calculus, invertibility of operators.
UDC:
517.983
BBK:
22.162
DOI:
10.15688/mpcm.jvolsu.2018.3.1