RUS  ENG
Full version
JOURNALS // Mathematical Physics and Computer Simulation // Archive

Vestnik Volgogradskogo gosudarstvennogo universiteta. Seriya 1. Mathematica. Physica, 2016 Issue 6(37), Pages 7–17 (Mi vvgum141)

Mathematics

Finding the vertices of the sum of two polytopes

T. A. Angelov

Saint Petersburg State University

Abstract: This work introduces a criterion for finding the vertices of a Minkowski sum of two polytopes $\mathrm{conv} A \subset \mathbb{R}^n$ and $\mathrm{conv} B \subset \mathbb{R}^n$, where $A = \{ a_0, \dots , a_m \}$ and $B = \{ b_0, b_1, \dots, b_{m_b}\}$. These convex sets are also denoted as V-polytopes. The constructions used in the present paper stay entirely in the space of V-polytopes, without any transitions to their duals, that is H-polytopes (half-space representation).
Before formulating a general criterion, we consider a special case—the sum of a polytope $\mathrm{conv} A$ and a line segment $\mathrm{conv}\{b_0, b_1\}$.
The following lemma holds. Fix $i$ in $0:m$.
1) If $v \not \in K(a_i)$, then $a_i + v$ is a vertex of $\mathrm{conv} A_v$.
    Else, $a_i + v$ is not a vertex of $\mathrm{conv} A_v$.
2) If $-v \not \in K(a_i)$, then $a_i$ is a vertex of $\mathrm{conv} A_v$.
    Else, $a_i$ is not a vertex of $\mathrm{conv} A_v$.
Here $A_v = \{ a_0, a_1, \dots , a_m, a_0 + v, a_1 + v, \dots , a_m + v\}$, $v = b_1 - b_0$,
$$ K(a_i) := K( \mathrm{conv} \left\{ a_0 - a_i, a_1 - a_i, \dots, a_{i-1} - a_i, a_{i+1} - a_i, \dots, a_m - a_i \right\}), $$
where $K(C)$ is a cone generated by set $C$.
Using an analogical scheme of reasoning as in the lemma, we present the main result of the this work.
Theorem. Fix $i \in 0:m$ and $j \in 0:m_b$. The point $a_i + b_j$ is a vertex of the polytope $\mathrm{conv} A + \mathrm{conv}B$ if and only if cones $K(b_j)$ and $K(a_i)$ do not intersect.
The suggested criterion possesses an intuitive graphic interpretation and is proven by elementary tools of convex anaylsis. In conclusion we note, that the theorem can be applied solving a linear programming problem. Moreover, the latter turns out to be dual to a similar LP problem, constructed using the properties of H-polytopes.

Keywords: polytope, conical hull, Minkowski sum, vertex, linear programming.

UDC: 519.852.2
BBK: 22.135

DOI: 10.15688/jvolsu1.2016.6.1



© Steklov Math. Inst. of RAS, 2026