RUS  ENG
Full version
JOURNALS // Mathematical Physics and Computer Simulation // Archive

Vestnik Volgogradskogo gosudarstvennogo universiteta. Seriya 1. Mathematica. Physica, 2016 Issue 5(36), Pages 97–103 (Mi vvgum134)

Mathematics

Disreteness of the spectrum for the Schrödinger operator and metric transformation on manifold

A. V. Svetlov

Volgograd State University

Abstract: In this paper we proof the conservation property for the discreteness of the spectrum for the Schrödinger operator on the simple warped products of order $k$ with the special kind of quasi-isometric transformation of the metric.
Let's consider a complete noncompact Riemannian manifold $D$, which is isometric to the product ${\mathbb R}_+ \times \mathrm{S}_1\times \mathrm{S}_2\times\cdots\times \mathrm{S}_k$ (where ${\mathbb R}_+=(0,+\infty)$, and $\mathrm{S}_i$ are compact Riemannian manifolds without boundary) with metric
$$ds^2=dr^2+q_1^2(r)d\theta_1^2+\cdots+q_k^2(r)d\theta_k^2,$$
where $d\theta_i^2$ is the metric on ${\mathrm S}_i$ and $q_i(r)$ is a smooth positive function on ${\mathbb R}_+$. We assume $\dim{\mathrm S}_i=n_i$ and denote $s(r)=q_1^{n_1}(r)\cdots q_k^{n_k}(r).$
Metric transformation on this manifold is determined by the following matrix $\sigma(r)$.
$$\|\sigma(r)\|= \left\|
\begin{array}{c|ccc} \delta_0^2(r) & 0 & \ldots & 0\\ \hline 0 & \delta_1^2(r)E_{n_1} & \ldots & 0 \\ \hline \vdots & & \ddots & \vdots \\ \hline 0 & 0 & \ldots & \delta_k^2(r)E_{n_k} \end{array}
\right\|. $$
The coefficients of this matrix are $C^1$-smooth, and let's $\Sigma(r)$ will stand for its determinant. Actually, we can easily calculate it:
$$\Sigma(r)=\det\|\sigma(r)\|=\delta_0^2(r)\delta_1^{2n_1}(r)\cdots\delta_k^{2n_k}(r).$$

On the manifold $D$ we study the Laplace–Beltrami operator
$$-\Delta=-\mathrm{div}\nabla$$
and the Schrödinger operator
$$-\Delta=-\mathrm{div}\nabla+c(r).$$

With the mentioned metric transformation the Laplace–Beltrami operator will change to
$$ -\widetilde{\Delta}=-\frac 1 {\sqrt{\Sigma}}\mathrm{div}(\sqrt{\Sigma}\sigma^{-1}\nabla). $$

Transformed Schrödinger operator we write as $\widetilde{L}=-\widetilde{\Delta}+c(r)$. Also we put
$$ F(r)=c(r)+\left(\frac{s'(r)}{2s(r)}\right)' +\left(\frac{s'(r)}{2s(r)}\right)^2, $$

$$ \Phi(r)=\left(\frac{\delta'(r)}{2\delta(r)}\right)'+\frac{s'(r)\delta'(r)}{2s(r)\delta(r)} +\left(\frac{\delta'(r)}{2\delta(r)}\right)^2, $$
where $\delta(r)=\frac{\sqrt{\Sigma(r)}}{\delta_0(r)}$.
Then we get the following theorem.
Theorem. Let's $F(r)+\Phi(r)>-C \ (C=\mathrm{const}>0)$. The spectrum of the Schrödinger operator $\widetilde{L}$ on the manifold $D$ is discrete if and only if
$$\forall \omega>0\quad\lim_{r\to\infty}\int\limits_r^{r+\omega}(F(r)+\Phi(r))dr=+\infty.$$

And next we come to the following corollary.
Corollary. If the Schrodinger operator $L$ on manifold $D$ has discrete spectrum, and we transform the metric of $D$ with some diagonal matrix $\|\sigma(r)\|$, and $\Phi(r)>\mathrm{const}$, then the Schrödinger operator $\widetilde{L}$ has discrete spectrum too. The same way non-discrete spectrum holds this characteristic.

Keywords: spectrum discreteness, Schrödinger operator, Riemannian manifolds, quasimodel manifolds, warped products.

UDC: 517.984
BBK: 22.162

DOI: 10.15688/jvolsu1.2016.5.9



© Steklov Math. Inst. of RAS, 2026