Mathematics
On discreteness of spectrum of Schrödinger operator with bounded potential
A. V. Svetlov Volgograd State University
Abstract:
Let's consider a complete noncompact Riemannian manifold
$M$ without boundary which is representable as
$K\cup D$, where
$K$ is a compact set and
$D$ is isometric to the product
$\mathbf{ R_0} \times \mathrm{S}_1\times \mathrm{S}_2\times\cdots\times \mathrm{S}_k$ (where
$\mathbf{ R_0}=(r_0,+\infty)$, and
$\mathrm{S}_i$ are compact Riemannian manifolds without boundary) with metric
$$ds^2=dr^2+q_1^2(r)d\theta_1^2+\cdots+q_k^2(r)d\theta_k^2,$$
where
$d\theta_i^2$ is the metric on
$\mathbb{S}_i$ and
$q_i(r)$
is a smooth positive function on
$\mathrm{R}_0$. We assume
$\dim\mathbb{S}_i=n_i$ and denote
$s(r)=q_1^{n_1}(r)\cdots
q_k^{n_k}(r)$. The manifold
$M$ is called a manifold with end.
Since its end
$D$ is a simple warped product,
$M$ is the simplest
case of a quasimodel manifold.
On the manifold
$M$ we study the Laplace–Beltrami operator
$$-\Delta=-\mathrm{div}\nabla$$
and the Schrödinger
operator
$$-\Delta=-\mathrm{div}\nabla+c(r,\theta).$$
We denote
$$F(r)=\left(\frac{s'(r)}{2s(r)}\right)'
+\left(\frac{s'(r)}{2s(r)}\right)^2.$$
Theorem 1.
Let's $c(r,\theta)\geq 0$.
The spectrum of the Schrödinger operator $L$ on the
manifold $M$ is discrete if one of the following
conditions is satisfied:
$$ V(D)<\infty\quad \text{ and }\quad \lim\limits_{r\to
\infty}\frac{V(D\setminus B(r))}{\mathrm{cap }(B(1),B(r))}=0,$$
or
$$\mathrm{cap }\, B(1)>0\quad \text{ and }\quad\lim\limits_{r\to
\infty}\frac{V(B(r))}{\mathrm{cap }\, B(r)}=0.$$
We can note that the conditions of the theorem 1 are not just sufficient, but necessary for discreteness of the Laplacian spectrum.
Theorem 2.
If there is a function $\tilde{c}(r)$ on manifold $M$ such that $c(r,\theta)\geq \tilde{c}(r)$ and $\tilde{c}(r)+F(r)>-C \ (C=\mathrm{const}>0)$,
then the spectrum of the Schrödinger operator $L$ on the manifold $M$ is discrete if
$$\forall \omega>0\quad\lim_{r\to\infty}\int\limits_r^{r+\omega}\left(\tilde{c}(r)+F(r)\right)dr=+\infty.$$
Keywords:
spectrum discreteness, Schrödinger operator, Riemannian manifolds, quasimodel manifolds, warped products.
UDC:
517.984
BBK:
22.162
DOI:
10.15688/jvolsu1.2016.4.6