RUS  ENG
Full version
JOURNALS // Mathematical Physics and Computer Simulation // Archive

Vestnik Volgogradskogo gosudarstvennogo universiteta. Seriya 1. Mathematica. Physica, 2016 Issue 4(35), Pages 84–91 (Mi vvgum120)

Mathematics

On discreteness of spectrum of Schrödinger operator with bounded potential

A. V. Svetlov

Volgograd State University

Abstract: Let's consider a complete noncompact Riemannian manifold $M$ without boundary which is representable as $K\cup D$, where $K$ is a compact set and $D$ is isometric to the product $\mathbf{ R_0} \times \mathrm{S}_1\times \mathrm{S}_2\times\cdots\times \mathrm{S}_k$ (where $\mathbf{ R_0}=(r_0,+\infty)$, and $\mathrm{S}_i$ are compact Riemannian manifolds without boundary) with metric
$$ds^2=dr^2+q_1^2(r)d\theta_1^2+\cdots+q_k^2(r)d\theta_k^2,$$
where $d\theta_i^2$ is the metric on $\mathbb{S}_i$ and $q_i(r)$ is a smooth positive function on $\mathrm{R}_0$. We assume $\dim\mathbb{S}_i=n_i$ and denote $s(r)=q_1^{n_1}(r)\cdots q_k^{n_k}(r)$. The manifold $M$ is called a manifold with end. Since its end $D$ is a simple warped product, $M$ is the simplest case of a quasimodel manifold.
On the manifold $M$ we study the Laplace–Beltrami operator
$$-\Delta=-\mathrm{div}\nabla$$
and the Schrödinger operator
$$-\Delta=-\mathrm{div}\nabla+c(r,\theta).$$
We denote
$$F(r)=\left(\frac{s'(r)}{2s(r)}\right)' +\left(\frac{s'(r)}{2s(r)}\right)^2.$$

Theorem 1. Let's $c(r,\theta)\geq 0$. The spectrum of the Schrödinger operator $L$ on the manifold $M$ is discrete if one of the following conditions is satisfied:
$$ V(D)<\infty\quad \text{ and }\quad \lim\limits_{r\to \infty}\frac{V(D\setminus B(r))}{\mathrm{cap }(B(1),B(r))}=0,$$
or
$$\mathrm{cap }\, B(1)>0\quad \text{ and }\quad\lim\limits_{r\to \infty}\frac{V(B(r))}{\mathrm{cap }\, B(r)}=0.$$

We can note that the conditions of the theorem 1 are not just sufficient, but necessary for discreteness of the Laplacian spectrum.
Theorem 2. If there is a function $\tilde{c}(r)$ on manifold $M$ such that $c(r,\theta)\geq \tilde{c}(r)$ and $\tilde{c}(r)+F(r)>-C \ (C=\mathrm{const}>0)$, then the spectrum of the Schrödinger operator $L$ on the manifold $M$ is discrete if
$$\forall \omega>0\quad\lim_{r\to\infty}\int\limits_r^{r+\omega}\left(\tilde{c}(r)+F(r)\right)dr=+\infty.$$


Keywords: spectrum discreteness, Schrödinger operator, Riemannian manifolds, quasimodel manifolds, warped products.

UDC: 517.984
BBK: 22.162

DOI: 10.15688/jvolsu1.2016.4.6



© Steklov Math. Inst. of RAS, 2026