RUS  ENG
Full version
JOURNALS // Vestnik Udmurtskogo Universiteta. Matematika. Mekhanika. Komp'yuternye Nauki // Archive

Vestn. Udmurtsk. Univ. Mat. Mekh. Komp. Nauki, 2018 Volume 28, Issue 4, Pages 462–473 (Mi vuu651)

MATHEMATICS

Asymptotics of the Schrödinger operator levels for a crystal film with a nonlocal potential

M. S. Smetanina

Mozhga Branch, Udmurt State University, ul. Internatsional’naya, 88, Mozhga, 427790, Russia

Abstract: We consider a three-dimensional Schrödinger operator for a crystal film with a nonlocal potential, which is a sum of an operator of multiplication by a function, and an operator of rank two (“separable potential”) of the form $V=W (x) +\lambda _1(\cdot,\phi _1)\phi _1+\lambda _2(\cdot,\phi _2)\phi _2 $. Here the function $W(x)$ decreases exponentially in the variable $x_3$, the functions $\phi _1(x)$, $\phi _2(x)$ are linearly independent, of Bloch type in the variables $x_1,\,x_2$ and exponentially decreasing in the variable $x_3$. Potentials of this type appear in the pseudopotential theory. A level of the Schrödinger operator is its eigenvalue or resonance. The existence and uniqueness of the level of this operator near zero is proved, and its asymptotics is obtained.

Keywords: Schrödinger equation, nonlocal potential, eigenvalues, resonances, asymptotics.

UDC: 517.958, 530.145.61

MSC: 35Q40, 35J10, 35P20

Received: 30.08.2018

DOI: 10.20537/vm180403



Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026