Abstract:
Mathematical modeling of heat transfer processes inside a closed square cavity having a local heat source of a semi-cylindrical shape has been performed. The effect of the heater location on the evolution of flow structures has been analyzed. The considered cavity was a closed square contour with a heat-generating element located on the bottom wall. Side walls were considered as isothermal. The presented boundary problem has been formulated in dimensionless variables such as stream function-vorticity-temperature and it has been solved by a finite difference method. The effects of Rayleigh numbers in the range of $10^{4}$–$10^{5}$ and the position of the local energy source on heat exchange inside the cavity have been estimated.