RUS  ENG
Full version
JOURNALS // Vestnik Udmurtskogo Universiteta. Matematika. Mekhanika. Komp'yuternye Nauki // Archive

Vestn. Udmurtsk. Univ. Mat. Mekh. Komp. Nauki, 2016 Volume 26, Issue 1, Pages 46–57 (Mi vuu517)

This article is cited in 11 papers

MATHEMATICS

Multiple capture of rigidly coordinated evaders

A. I. Blagodatskikh

Udmurt State University, ul. Universitetskaya, 1, Izhevsk, 426034, Russia

Abstract: The present paper deals with the problem of pursuit of a group of rigidly coordinated evaders in a nonstationary conflict-controlled process with equal opportunities
$$
\begin{array}{llllllllcccc} P_i&:&\dot x_i=A(t)x_i+u_i,& u_i\in U(t),& x_i(t_0)=X_i^0,& i=1,2,\dots,n,\\ E_j&:&\dot y_j=A(t)y_j+v,& v\in U(t),& y_j(t_0)=Y_j^0,& j=1,2,\dots,m.\\ \end{array}
$$
We say that a multiple capture in the problem of pursuit holds if the specified number of pursuers catch evaders, possibly at different times
$$ x_\alpha(\tau_\alpha)=y_{j_\alpha}(\tau_\alpha),\quad\alpha\in\Lambda,\quad\Lambda\subset\{1,2,\dots,n\},\quad|\Lambda|=b\quad(n\geqslant b\geqslant 1),\quad j_\alpha\subset\{1,2,\dots,m\}. $$
The problem of nonstrict simultaneous multiple capture requires that capture moments coincide
$$ x_\alpha (\tau)=y_{j_\alpha}(\tau),\quad\alpha\in\Lambda. $$
The problem of a simultaneous multiple capture requires that lowest capture moments coincide
$$ x_\alpha(\tau)=y_{j_\alpha}(\tau),\quad x_\alpha(s)\ne y_{j_\alpha}(s),\quad s\in[t_0, \tau),\quad\alpha\in\Lambda. $$
In this paper we obtain necessary and sufficient conditions for simultaneous multiple capture and nonstrict simultaneous multiple capture.

Keywords: capture, multiple capture, simultaneous multiple capture, pursuit, evasion, differential games, conflict-controlled processes.

UDC: 517.977.8+519.837.4

MSC: 49N70, 49N75

Received: 20.02.2016

DOI: 10.20537/vm160104



Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026