RUS  ENG
Full version
JOURNALS // Vestnik TVGU. Seriya: Prikladnaya Matematika [Herald of Tver State University. Series: Applied Mathematics] // Archive

Vestnik TVGU. Ser. Prikl. Matem. [Herald of Tver State University. Ser. Appl. Math.], 2022 Issue 3, Pages 62–75 (Mi vtpmk641)

This article is cited in 1 paper

Mathematical Modelling, Numerical Methods and Software Systems

Vector integrals of the Euler, Poisson and Volterra-Zhukovsky equations

V. N. Onikiychuka, I. V. Onikiychukb

a Bauman Moscow State Technical University, Mytishchi Branch, Mytishchi
b JSC "Garuda Aero", Moscow

Abstract: The dynamic Euler equations for a rotating rigid body with a fixed point in projection on fixed (inertial) axes are derived. A complete system of analytical integrals in the form of a vector integral for the dynamic Euler equation with the zero right side, as well as for the kinematic Poisson and Volterra-Zhukovsky equations is presented. All these integrals do not contain elliptic quadratures.

Keywords: Euler equations, Poisson equations, Volterra-Zhukovsky equations, vector integrals, solid dynamics, elliptic quadrature.

UDC: 531.31

PACS: 45.05.+x, 45.20.−d, 45.20.D−, 45.20.dc

Received: 10.04.2022
Revised: 22.05.2022

DOI: 10.26456/vtpmk641



Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026