MATHEMATICS
Associated left-invariant contact metric structures on the $7$-dimensional Heisenberg group $H^7$
Ya. V. Slavolyubova Kemerovo Institute (branch) of Plekhanov Russian University of Economics, Kemerovo, Russian Federation
Abstract:
In this paper, we construct new nonstandard associated left-invariant contact metric structures
$(\eta,\xi,\varphi,g_\lambda)$ on the
$7$-dimensional Heisenberg group
$H^7$.
The associated left-invariant contact metric structures for the contact structure
$\eta$ on the contact Lie group
$(H^7,\eta)$ were given by the affinor
$\varphi$ and the (pseudo-)Riemannian metric
$g_\lambda$ such that
\begin{gather}
\varphi\mid_{\mathrm{ker}\,\eta}=J,\quad \varphi(\xi)=0, \notag\\
g_\lambda(X,Y)=d\eta(\varphi X,Y)+\lambda\eta(X)\eta(Y),
\end{gather}
where
$J$ is an almost complex structure compatible with the restriction of
$g_\lambda$ on
$\mathrm{ker}\,\eta$,
$g_\lambda\mid_{\mathrm{ker}\,\eta}$.
The parameter
$\lambda$ provided deformation of the associated metric
$g_\lambda$ along the Reeb field
$\xi$.
The affinor $\varphi_0=\begin{pmatrix}J_0&0\\0&0\end{pmatrix}$ and the metric $g_0=\begin{pmatrix}I&0\\0&\lambda\end{pmatrix}$ are fixed. The new affinors
$\varphi=\varphi_0(Id+P)(Id-P)^{-1}$ are given by an operator
$P:L(H^7)\to L(H^7)$ such that
$P(\xi)=0$ and $P\mid_{\mathrm{ker}\,\eta}=\begin{pmatrix}A&B&D\\ B&C&F\\ D&F&N\end{pmatrix}$, where $A=\begin{pmatrix}u&v\\ v&-u\end{pmatrix}$, $B=\begin{pmatrix}s&t\\ t&-s\end{pmatrix}$, $C=\begin{pmatrix}k& l\\ l& -k\end{pmatrix}$, $D=\begin{pmatrix}x & y\\ y& -x\end{pmatrix}$, $F=\begin{pmatrix}q& r\\ r& -q\end{pmatrix}$, and $N=\begin{pmatrix}w& z\\ z& -w\end{pmatrix}$ are symmetric matrices;
$u, v, s, t, k, l, x, y, q, r, w$, and
$z$ are real parameters.
Each new affinor
$\varphi$ defines a new associated metric
$g_\lambda$ by formula (1).
We have considered some particular classes of associated metrics corresponding to the affinors
$\varphi$ which were given by the operators
$P$ of the following types
$$
P\mid_{\mathrm{ker}\,\eta}=\begin{pmatrix}0&B&0\\ B&0&0\\ 0&0&0\end{pmatrix},
P\mid_{\mathrm{ker}\,\eta}=\begin{pmatrix}0&0& D\\ 0&0&0\\ D&0&0\end{pmatrix},
P\mid_{\mathrm{ker}\,\eta}=\begin{pmatrix}0&0&0\\ 0&0& F\\ 0&F&0\end{pmatrix},
P\mid_{\mathrm{ker}\,\eta}=\begin{pmatrix}A&0&0\\ 0&C&0\\ 0&0& N\end{pmatrix}.
$$
The following theorem was received for any associated (pseudo-)Riemannian metric $g_\lambda(X,Y)=d\eta(\varphi X,Y)+\lambda\eta(X)\eta(Y)$.
Theorem 1. Any left-invariant contact metric structure
$(\eta,\xi,\varphi,g_\lambda)$ on the Heisenberg group
$H^7$ is a Sasaki,
$K$-contact, and
$\eta$-Einstein structure.
The squares of the norms of a Riemann tensor
$R$ and Ricci tensor
$Ric(X,Y)=g_\lambda(A_{Ric}X,Y)$ of associated left-invariant metric
$g_\lambda$ have the following expressions:
$||R||^2=\frac{69\lambda^2}4$,
$||Ric||^2=\frac{15\lambda^2}4$.
The Ricci operator has the following matrix:
$$
A_{Ric}=\begin{pmatrix}-\frac\lambda2& 0&0&0&0&0&0\\
0&-\frac\lambda2&0&0&0&0&0\\
0&0&-\frac\lambda2&0&0&0&0\\
0&0&0&-\frac\lambda2&0&0&0\\
0&0&0&0&-\frac\lambda2&0&0\\
0&0&0&0&0&-\frac\lambda2&0\\
0&0&0&0&0&0&-\frac\lambda2\end{pmatrix}.
$$
The sign of the scalar curvature of associated left-invariant metric
$g_\lambda$ is not constant and
$S=-\frac{3\lambda}2$.
In addition, the following theorem has been proved for any
$(2n+1)$-dimensional Heisenberg group
$H^{2n+1}$ with a given (pseudo-)Riemannian metric $g_0=e_1^{^*2}+\dots+e_{2n}^{^*2}+\lambda e_{2n+1}^{^*2}$.
Theorem 2. A left-invariant contact metric structure
$(\eta,\xi,\varphi_0,g_0)$ on the Heisenberg group
$H^{2n+1}$ is
$\eta$-Einstein, and $Ric_{g_0}(X,Y)=-\frac\lambda2g_0(X,Y)+\frac{(n+\lambda)\lambda}2\eta(X)\eta(Y)$,
$X,Y\in L(H^{2n+1})$.
Keywords:
Lie group, contact metric structures, associated metric.
UDC:
514.76
MSC: 53D10 Received: 27.02.2018
DOI:
10.17223/19988621/54/3