RUS  ENG
Full version
JOURNALS // Vestnik Tomskogo Gosudarstvennogo Universiteta. Matematika i Mekhanika // Archive

Vestn. Tomsk. Gos. Univ. Mat. Mekh., 2018 Number 53, Pages 5–15 (Mi vtgu645)

This article is cited in 2 papers

MATHEMATICS

On symmetric cuts of a real-closed field

N. Yu. Galanova

Tomsk State University, Tomsk, Russian Federation

Abstract: The paper investigates properties of a subfield of the field of bounded formal power series $\mathbf{R}[[G,\beta^+]]$, $|G|=cf(G)=\beta^+>\beta>\aleph_0$. We construct (under GCH) a real closed field $H$, $\mathbf{R}[[G,\beta]]\subset H\subset\mathbf{R}[[G,\beta^+]]$ which has symmetric cuts of cofinality $\beta^+$. We show that $H$ and $\overline{H(x_{\beta^+})}$ are truncation closed. We use G. Pestov's and S. Shelah's classifications of cuts (a symmetric cut and a non-algebraic cut).

Keywords: real closed field, truncation closed field, field of bounded formal power series, symmetric cut, cofinality of a cut.

UDC: 512.623.23

MSC: 12F20, 12J15

Received: 28.01.2018

DOI: 10.17223/19988621/53/1



Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026