RUS  ENG
Full version
JOURNALS // Vestnik Tomskogo Gosudarstvennogo Universiteta. Matematika i Mekhanika // Archive

Vestn. Tomsk. Gos. Univ. Mat. Mekh., 2017 Number 46, Pages 36–40 (Mi vtgu576)

MATHEMATICS

On modification of the Sorgenfrey line

E. S. Sukhacheva, T. E. Khmyleva

Tomsk State University, Russian Federation

Abstract: In this paper, we consider a topological space $S_A$ that is a modification of the Sorgenfrey line $S$ and is defined as follows: if a point $x\in A\subset \mathbf{R}$, then the base of neighborhoods of the point is $\{[x, x+\varepsilon), \forall\varepsilon>0\}$; if a point $x\in \mathbf{R}\setminus A$, then the base of neighborhoods of the point is $\{(x-\varepsilon, x], \forall\varepsilon>0\}$. The following criterion for a homeomorphism of the spaces $S_A$ and $S_Q$ has been obtained: the spaces $S_A$ and $S_Q$ are homeomorphic if and only if a subset $A\subset S_A$ is countable and dense in $S$.

Keywords: Sorgenfrey line, homeomorphism, Baire space, the space of the second category.

UDC: 515.12

Received: 10.02.2017

DOI: 10.17223/19988621/46/5



Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026