Abstract:
This work deals with numerical modeling of aerodynamics in an air-centrifugal classifier, the separation zone of which consists of rotating profiled disk elements between which a periodic turbulent swirling flow in the direction of the axis of rotation is observed. The non-stationary oscillatory regime of the carrier medium occurs due to harmonic oscillations of the carrier medium flow or circumferential component of the velocity vector at the entrance into the separation chamber. Creating a non-stationary regime of motion of the gas phase allows one to reduce the residence time of the boundary particle size with the aim to enhance the process of classification. The numerical solution was carried out in the orthogonal curvilinear coordinate system based on the famous Wilcox turbulence model.