RUS  ENG
Full version
JOURNALS // Vestnik Tomskogo Gosudarstvennogo Universiteta. Matematika i Mekhanika // Archive

Vestn. Tomsk. Gos. Univ. Mat. Mekh., 2025 Number 95, Pages 19–27 (Mi vtgu1161)

MATHEMATICS

Conjugate idempotent formal matrices of order $2$ over residue class rings

A. E. Zykov, A. M. Koroleva, Ts. D. Norbosambuev

Tomsk State University, Tomsk, Russian Federation

Abstract: Let $p$ be a prime, $p > 1$, $m$ and $n$ be integers, $m > n > 0$. In recent works [1–5] the following formal matrix rings were considered:
$$ K = \begin{pmatrix} \mathbf{Z} /p^m\mathbf{Z} & \mathbf{Z}/ p^n\mathbf{Z}\\ \mathbf{Z} /p^n\mathbf{Z} & \mathbf{Z}/ p^n\mathbf{Z} \end{pmatrix} =\left\{ \begin{pmatrix} a+p^m\mathbf{Z} & b+ p^n\mathbf{Z}\\ c+p^n\mathbf{Z} & d+ p^n\mathbf{Z} \end{pmatrix} \mid a, b, c, d\in\mathbf{Z} \right\} $$
with multiplication defined so that for every $A, A'\in K$ we have
\begin{multline*} A\cdot A'= \begin{pmatrix} a+p^m\mathbf{Z} & b+ p^n\mathbf{Z}\\ c+p^n\mathbf{Z} & d+ p^n\mathbf{Z} \end{pmatrix} \begin{pmatrix} a'+p^m\mathbf{Z} & b'+ p^n\mathbf{Z}\\ c'+p^n\mathbf{Z} & d'+ p^n\mathbf{Z} \end{pmatrix} =\\ = \begin{pmatrix} aa'+p^{m-n}bc'+p^m\mathbf{Z} & ab'+bd'+ p^n\mathbf{Z}\\ ca'+dc'+p^n\mathbf{Z} & p^{m-n}cb' +dd'+ p^n\mathbf{Z} \end{pmatrix}. \end{multline*}
It is known [2–5] that the matrix $A=\begin{pmatrix} a+p^m\mathbf{Z} & b+ p^n\mathbf{Z}\\ c+p^n\mathbf{Z} & d+ p^n\mathbf{Z} \end{pmatrix}\in K $ is nilpotent (invertible) if and only if $p$ divides (does not divide) $a$ and $d$.
In [1] it was shown that $A$ is a nontrivial idempotent in $K$ if and only if $A$ has the form
$$ \begin{pmatrix} 1-\sigma_{\nu+1}+p^m\mathbf{Z} & b+ p^n\mathbf{Z}\\ c+p^n\mathbf{Z} & \sigma+ p^n\mathbf{Z} \end{pmatrix}\quad \text{ or }\quad \begin{pmatrix} \sigma_{\nu+1}+p^m\mathbf{Z} & b+ p^n\mathbf{Z}\\ c+p^n\mathbf{Z} & 1-\sigma+ p^n\mathbf{Z} \end{pmatrix} $$
where $b$, $c \in \mathbf{Z}$, $\sigma=\sum\limits_{k=1}^{\nu+1} C_k(p^{m-n}bc)^k$, $\nu = \left[\frac{n-1}{m-n}\right]$ and $C_i$ are Catalan numbers. For every $i > 0$ we define the $i$th Catalan number by $C_i=\frac1i\binom{2i-2}{i-1}=\frac{(2i-2)!}{i!(i-1)!}$, so $C_1 = 1$, $C_2 = 1$, $C_3 = 2$, $C_4 = 5$, $C_5 = 14$, etc.
Let us call a non-trivial idempotent matrix with an invertible element in the upper left corner an idempotent matrix of type $1$. An idempotent matrix of type $2$ is a non-trivial idempotent matrix with an invertible element in the lower right corner.
Definition 2.1. Idempotent elements $e_1$ and $e_2$ of ring $R$ are conjugate if there is an invertible element $u\in R$ such that $e_2 = ue_1u^{–1}$.
We have obtained the following results.
Theorem 2.3. In the formal matrix ring $K$ every idempotent matrix of type $1$ is conjugate to the matrix $E_{11}=\begin{pmatrix} 1+p^m\mathbf{Z} & 0+ p^n\mathbf{Z}\\ 0+p^n\mathbf{Z} & 0+ p^n\mathbf{Z} \end{pmatrix} $. Likewise, every idempotent matrix of type $2$ is conjugate to the matrix $E_{22}=\begin{pmatrix} 0+p^m\mathbf{Z} & 0+ p^n\mathbf{Z}\\ 0+p^n\mathbf{Z} & 1+ p^n\mathbf{Z} \end{pmatrix} $.
Corollary 2.4. In the formal matrix ring $K$ two idempotent matrices of different types are never conjugate.
Corollary 2.6. In the formal matrix ring $K$ any two idempotent matrices of the same type are conjugate.

Keywords: formal matrix ring, idempotent formal matrix, conjugate idempotents.

UDC: 512.552

MSC: 16S50

Received: 16.03.2025
Accepted: June 9, 2025

DOI: 10.17223/19988621/95/2



© Steklov Math. Inst. of RAS, 2026