RUS  ENG
Full version
JOURNALS // Vestnik Tomskogo Gosudarstvennogo Universiteta. Matematika i Mekhanika // Archive

Vestn. Tomsk. Gos. Univ. Mat. Mekh., 2025 Number 93, Pages 30–40 (Mi vtgu1134)

This article is cited in 1 paper

MATHEMATICS

Idempotent and nil-clean formal matrices of order 2 over residue class rings

A. M. Korolevaa, Ts. D. Norbosambueva, M. V. Podkorytovb

a Tomsk State University, Tomsk, Russian Federation
b Novosibirsk State University, Novosibirsk, Russian Federation

Abstract: Let us consider the set of formal matrices
$$ K = \begin{pmatrix} \mathbf{Z} /p^m\mathbf{Z} & \mathbf{Z}/ p^n\mathbf{Z}\\ \mathbf{Z} /p^n\mathbf{Z} & \mathbf{Z}/ p^n\mathbf{Z} \end{pmatrix} =\left\{ \begin{pmatrix} a+p^m\mathbf{Z} & b+ p^n\mathbf{Z}\\ c+p^n\mathbf{Z} & d+ p^n\mathbf{Z} \end{pmatrix} \mid a, b, c, d\in\mathbf{Z} \right\} $$
over residue class rings $\mathbf{Z}/p^m\mathbf{Z}$ and $\mathbf{Z}/p^n\mathbf{Z}$, where $p$ is a prime, $m$ and $n$ are natural numbers, $m > n > 0$. For any matrices $A, A'\in K$, we define multiplication as follows:
\begin{multline*} \begin{pmatrix} a+p^m\mathbf{Z} & b+ p^n\mathbf{Z}\\ c+p^n\mathbf{Z} & d+ p^n\mathbf{Z} \end{pmatrix} \begin{pmatrix} a'+p^m\mathbf{Z} & b'+ p^n\mathbf{Z}\\ c'+p^n\mathbf{Z} & d'+ p^n\mathbf{Z} \end{pmatrix} =\\ = \begin{pmatrix} aa'+p^{m-n}bc'+p^m\mathbf{Z} & ab'+bd'+ p^n\mathbf{Z}\\ ca'+dc'+p^n\mathbf{Z} & p^{m-n}cb' +dd'+ p^n\mathbf{Z} \end{pmatrix}. \end{multline*}
With entrywise addition and multiplication introduced as above, the set $K$ forms a ring.
It is known that a formal pmatrix from $K$ is invertible if and only if its elements on the main diagonal are not multiples of $p$. It is also known that a formal pmatrix from $K$ is nilpotent if and only if its elements on the main diagonal are multiples of $p$.
We call the sequence of natural numbers defined as follows Catalan numbers: $C_1 = 1$, $C_{k+1} =\sum\limits_{i=1}^k C_iC_{k-i+1}$, i.e. $C_1 = 1$, $C_2 = 1$, $C_3 = 2$, $C_4 = 5$, $C_5 = 14$, $C_6 = 42$ and so on.
The following theorem is the main result of our paper.
Theorem 1.2. Matrix $A$ is a nontrivial idempotent of $K$ if and only if $A$ has the form
$$ A= \begin{pmatrix} 1-\sigma_{\nu+1}+p^m\mathbf{Z} & b+ p^n\mathbf{Z}\\ c+p^n\mathbf{Z} & \sigma_\nu+ p^n\mathbf{Z} \end{pmatrix}\quad \text{ or }\quad A= \begin{pmatrix} \sigma_{\nu+1}+p^m\mathbf{Z} & b+ p^n\mathbf{Z}\\ c+p^n\mathbf{Z} & 1-\sigma_\nu+ p^n\mathbf{Z} \end{pmatrix} $$
where $b$, $c \in \mathbf{Z}$, $\nu = \left[\frac{n-1}{m-n}\right]$, $\sigma_\nu=\sum\limits_{k=1}^\nu C_k(p^{m-n}bc)^k$, where $C_i$ are Catalan numbers. Note that $\nu$ here can be equal to $0$ (then $\sigma_\nu = 0$).
Corollary 2.2. The ring $K$ is not a $k$-nil-clean ring for any natural number $k$ such that $k < p-1$.

Keywords: formal matrix ring, idempotent formal matrix, nil-clean ring, Morita context ring.

UDC: 512.552

MSC: 08A35, 15B99, 16S50

Received: 15.10.2024
Accepted: February 7, 2025

DOI: 10.17223/19988621/93/3



© Steklov Math. Inst. of RAS, 2026