RUS  ENG
Full version
JOURNALS // Vestnik Tomskogo Gosudarstvennogo Universiteta. Matematika i Mekhanika // Archive

Vestn. Tomsk. Gos. Univ. Mat. Mekh., 2024 Number 92, Pages 48–55 (Mi vtgu1121)

MATHEMATICS

On linear homeomorphisms of spaces of continuous functions with the pointwise convergence topology

T. E. Khmyleva, K. M. Petrova

Tomsk State University, Tomsk, Russian Federation

Abstract: By analogy with the spaces $C_p(X)$, we introduce into consideration the spaces $C_{p,A}(X)$ of continuous realvalued functions with the topology of pointwise convergence on an everywhere dense subset $A \subset X$. For the spaces $C_{p,A} [a,b]$ and $C_{p,B} [c,d]$, where $A=[a,b]\setminus\{a_1,a_2,\dots. a_n\}$, and $B = [c,d]\setminus\{b_1,b_2,\dots.b_m\}$, it is proved that the spaces $C_{p,A} [a,b]$ and $C_{p,B} [c,d]$ are linearly homeomorphic if and only if $n = m$.

Keywords: continuous functions, homeomorphism, pointwise convergence topology, linearly bounded functionals, function of bounded variation, Stieltjes integral.

UDC: 515.1

MSC: 54F65

Received: 21.06.2024

DOI: 10.17223/19988621/92/4



© Steklov Math. Inst. of RAS, 2026