RUS  ENG
Full version
JOURNALS // Vestnik Tomskogo Gosudarstvennogo Universiteta. Matematika i Mekhanika // Archive

Vestn. Tomsk. Gos. Univ. Mat. Mekh., 2024 Number 88, Pages 26–36 (Mi vtgu1067)

This article is cited in 1 paper

MATHEMATICS

Automorphisms of nil-triangular subrings of chevalley algebras of type $G_2$ over the field of characteristic $2$

A. V. Kazakova

Siberian Federal University, Krasnoyarsk, Russian Federation

Abstract: Let $N\Phi(K)$ be a niltriangular subalgebra of the Chevalley algebra of an associative-commutative ring $K$ with identity, associated with the root system $\Phi$ (the basis $N\Phi(K)$ consists of all elements $e_r\in\Phi^+$ of the Chevalley basis). We describe automorphisms of a niltriangular Lie ring of type $G_2$ over a field $K$ under the constraint $2K=0$. To study automorphisms, the upper and lower central series described in this paper are essentially used.

Keywords: Chevalley algebra, nil-triangular subalgebra, ring, automorphism, hypercentral automorphism.

UDC: 512.554

MSC: 17D99

Received: 26.01.2024
Accepted: April 10, 2024

DOI: 10.17223/19988621/88/3



© Steklov Math. Inst. of RAS, 2026