RUS  ENG
Full version
JOURNALS // Vestnik Tomskogo Gosudarstvennogo Universiteta. Matematika i Mekhanika // Archive

Vestn. Tomsk. Gos. Univ. Mat. Mekh., 2023 Number 85, Pages 32–42 (Mi vtgu1027)

This article is cited in 1 paper

MATHEMATICS

Good formal matrix rings over residue class rings

Ts. D. Norbosambuev

Tomsk State University, Tomsk, Russia

Abstract: Let $p$ be a prime number, $m, n$ be natural and $m\geqslant n>0$. Let the formal matrix ring $\begin{pmatrix} \mathbf{Z}/p^m\mathbf{Z} & \mathbf{Z}/p^n\mathbf{Z}\\ \mathbf{Z}/p^n\mathbf{Z} & \mathbf{Z}/p^n\mathbf{Z} \end{pmatrix}$ be isomorphic to the endomorphism ring $E((\mathbf{Z}/p^m\mathbf{Z})\oplus (\mathbf{Z}/p^n\mathbf{Z}))$, may be of interest in data encryption. We will show that the ring $E((\mathbf{Z}/p^m\mathbf{Z})\oplus (\mathbf{Z}/p^n\mathbf{Z}))$, $m\geqslant n$, is $2$-good and $2$-nil-good for $p > 2$ and not good for $p = 2$ and $m > n$.

Keywords: ring, good ring, Morita context ring, endomorphism ring of abelian group.

UDC: 512.552

MSC: 08A35, 15B99, 16S50

Received: 24.11.2022
Accepted: October 10, 2023

DOI: 10.17223/19988621/85/3



© Steklov Math. Inst. of RAS, 2026