Abstract:
We consider multivalued mappings acting in spaces with a vector-valued metric. A vector-valued metric is understood as a mapping satisfying the axioms “of an ordinary metric” with values in the cone of a linear normed space. The concept of the regularity set of a multivalued mapping is defined. A set of regularity is used in the study of inclusions in spaces with a vector-valued metric.
Keywords:multi-valued mapping; space with vector-valued metric; metric regularity; Lipschitz mapping; inclusion.