RUS  ENG
Full version
JOURNALS // Russian Universities Reports. Mathematics // Archive

Russian Universities Reports. Mathematics, 2025 Volume 30, Issue 150, Pages 128–143 (Mi vtamu352)

Scientific articles

Pólya groups and fields in some real biquadratic number fields

S. El Madrari

Moulay Ismail University

Abstract: Let $K$ be a number field and $\mathcal{O}_K$ be its ring of integers. Let $\prod_q(K)$ be the product of all prime ideals of $\mathcal{O}_K$ with absolute norm $q.$ The Pólya group of a number field $K$ is the subgroup of the class group of $K$ generated by the classes of $\prod_q(K).$ $K$ is a Pólya field if and only if the ideals $ \prod_{q}(K)$ are principal. In this paper, we follow the work that we have done in [S. EL Madrari, “On the Pólya fields of some real biquadratic fields”, Matematicki Vesnik, online 05.09.2024] where we studied the Pólya groups and fields in a particulare cases. Here, we will give the Pólya groups of $K=\mathbb{Q}(\sqrt{d}_1,\sqrt{d}_2)$ such that $d_1=lm_1$ and $d_2=lm_2$ are square-free integers with $l>1$ and $gcd(m_1,m_2)=1$ and the prime $2$ is not totally ramified in $K/\mathbb{Q}.$ And then, we characterize the Pólya fields of the real biquadratic fields $K.$

Keywords: Pólya fields, Pólya groups, real biquadratic fields, the first cohomology group of units, integer-valued polynomials

UDC: 511.2, 512.62

MSC: 11R04, 11R16, 11R27, 13F20

Received: 17.01.2025
Accepted: 23.04.2025

Language: English

DOI: 10.20310/2686-9667-2025-30-150-128-143



© Steklov Math. Inst. of RAS, 2026