RUS  ENG
Full version
JOURNALS // Russian Universities Reports. Mathematics // Archive

Russian Universities Reports. Mathematics, 2020 Volume 25, Issue 130, Pages 123–130 (Mi vtamu175)

Scientific articles

On the spectral properties and positivity of solutions of a periodic boundary value problem for a second-order functional differential equation

M. J. Alvesa, S. M. Labovskib

a Eduardo Mondlane University
b Plekhanov Russian University of Economics

Abstract: For a functional-differential operator
\begin{equation*} \mathcal{L} u = (1/\rho)\left(-(pu')'+\int_0^l u(s)d_s r(x,s)\right) \end{equation*}
with symmetry, the completeness and orthogonality of the eigenfunctions is shown. The positivity conditions of the Green function of the periodic boundary value problem are obtained.

Keywords: positive solutions, spectral properties.

UDC: 517.9

Received: 01.04.2020

DOI: 10.20310/2686-9667-2020-25-130-123-130



© Steklov Math. Inst. of RAS, 2026