RUS  ENG
Full version
JOURNALS // Russian Universities Reports. Mathematics // Archive

Tambov University Reports. Series: Natural and Technical Sciences, 2017 Volume 22, Issue 6, Pages 1229–1234 (Mi vtamu123)

This article is cited in 1 paper

MATHEMATICS

On positivity of the Green function for Poisson problem for a linear functional differential equation

S. M. Labovski

Plekhanov Russian University of Economics

Abstract: For the Poisson problem
\begin{equation*} -\Delta u + p(x)u - \int\limits_\Omega u(s)\,r(x,ds) = \rho f, \quad u\big|_{\Gamma(\Omega)} =0 \end{equation*}
equivalence of positivity of the Green function and other classical properties is showed. Here $\Omega$ is an open set in $\mathbb{R}^n$, and $\Gamma(\Omega)$ is the boundary of the $\Omega$. For almost all $x\in\Omega$, $r(x,\cdot)$ is a measure satisfying certain symmetry condition. In particular this equation involves integral differential equation and the equation
$$ -\Delta u + p(x)u(x) - \sum_{i=1}^{m}p_i(x)u(h_i(x)) = \rho f, $$
where $h_i\colon \Omega\to\Omega$ is a measurable mapping.

Keywords: Green function, Poisson problem, Vallee-Poussin theorem, Spectrum of selfadjoint operator.

UDC: 517.929.7

Received: 03.09.2017

Language: English

DOI: 10.20310/1810-0198-2017-22-6-1229-1234



© Steklov Math. Inst. of RAS, 2026