Abstract:
The article proposes a mathematical model of a malaria epidemic with vaccination in a population of people (hosts), where the disease is transmitted by a mosquito (carrier). The malaria transmission model is defined by a system of ordinary differential equations, which takes into account the level of vaccination in the population. The host population at any given time is divided into four subgroups: susceptible, vector-bitten, infected, and recovered. Sufficient conditions for the stability of a disease-free equilibrium and endemic equilibrium are obtained using the theory of Lyapunov functions. Numerical modeling represents the influence of parameters (including the vaccination level of the population) on the disease spread.