RUS  ENG
Full version
JOURNALS // Vestnik Samarskogo Universiteta. Estestvenno-Nauchnaya Seriya // Archive

Vestnik SamU. Estestvenno-Nauchnaya Ser., 2016 Issue 3-4, Pages 7–13 (Mi vsgu506)

This article is cited in 1 paper

Mathematics

On the classification of function germs of two variables that are equivariant simple with respect to an action of the cyclic group of order three

E. A. Astashov

Lomonosov Moscow State University, Leninskie Gory 1, GSP-1, Moscow, 119991, Russia

Abstract: We consider the problem to classify function germs $(\mathbb{C}^2,0)\to(\mathbb{C},0)$ that are equivariant simple with respect to nontrivial actions of the group $\mathbb{Z}^3$ on $\mathbb{C}^2$ and on $\mathbb{C}$ up to equivariant automorphism germs $(\mathbb{C}^2,0)\to(\mathbb{C}^2,0)$. The complete classification of such germs is obtained in the case of nonscalar action of $\mathbb{Z}^3$ on $\mathbb{C}^2$ that is nontrivial in both coordinates. Namely, a germ is equivariant simple with respect to such a pair of actions if and only if it is equivalent to ine of the following germs:

\begin{eqnarray*} (x,y)&\mapsto& x^{3k+1}+y^2, \quad k\geqslant1;\\ (x,y)&\mapsto& x^2y+y^{3k-1}, \quad k\geqslant2;\\ (x,y)&\mapsto& x^4+xy^3;\\ (x,y)&\mapsto &x^4+y^5. \end{eqnarray*}


Keywords: classification of singularities, simple singularities, group action, equivariant functions.

UDC: 512.761.5

Received: 15.06.2016



Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026