RUS  ENG
Full version
JOURNALS // Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences // Archive

Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.], 2014 Issue 4(37), Pages 16–21 (Mi vsgtu1361)

Differential Equations

On one generalization of Bessel function

N. A. Virchenko, M. A. Chetvertak

National Technical University of Ukraine "Kiev Polytechnic Institute", Kiev, 03056, Ukraine

Abstract: In this paper the generalized Bessel function $J_{\mu ,\omega } ( x )$ is introduced. The function $J_{\mu ,\omega } ( x )$ is given as one solution of the following differential equation:
$$ x^2{y}''+x{y}'+\left( {x-\mu ^2} \right)\left( {x+\omega ^2} \right)y=0, \quad \mu , \omega \notin \mathbb Z. $$
The representation of the $J_{\mu ,\omega } ( x )$ by the power series is given. The theorem on integral representations of the function $J_{\mu ,\omega } ( x )$ is established. The main properties of the function $J_{\mu ,\omega } ( x )$ are studied. The integral transforms of Bessel type with the function $J_{\mu ,\omega } ( x )$ is constructed. Formula of inversion of this transform is received.

Keywords: Bessel function, hypergeometric function, integral transform.

UDC: 517.584, 517.923

MSC: 33C10, 34B30

Original article submitted 03/XI/2014
revision submitted – 26/XI/2014

DOI: 10.14498/vsgtu1361



Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026