RUS  ENG
Full version
JOURNALS // Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences // Archive

Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.], 2015 Volume 19, Number 2, Pages 283–292 (Mi vsgtu1355)

This article is cited in 1 paper

Differential Equations and Mathematical Physics

De la Vallee Poussin problem in the kernel of the convolution operator on the half-plane

V. V. Napalkova, K. Zimensb

a Institute of Mathematics with Computing Centre, Ufa Science Centre, Russian Academy of Sciences, Ufa, 450008, Russian Federation
b Ufa State Aviation Technical University, Ufa, 450000, Russian Federation

Abstract: We consider the multipoint de la Vallee Poussin (interpolational) problem in the half-plane $D$, $D=\{z \, :\, \mathop{\mathrm{Re}} z<\alpha,$ $ \alpha>0\}$. Let $\psi(z)\in H(D)$; $\mu_1$, $\mu_2$$\ldots \in D$ be the positive zero points of this function and let the boundary of domain $D$ contain their limit. Also, we assume that $\mu_k$ is of $s_k$ multiplicity, $k=1, 2, \dots$. Let us set $M_{\varphi}$ an operator of convolution with the characteristic function $\varphi(z)$. Taking an arbitrary sequence $a_{kj},$ $j=0, 1, \ldots, s_k-1$ we should ask: is there a function $u(z) \in \mathop{\mathrm{Ker}}M_\varphi$ that provides the relation $u^{(j)}(\mu_{k})=a_{kj},$ $j=0, 1,\dots,s_k-1$? We assume the operator characteristic function to be of completely regular growth. The solvability conditions for the multipoint de la Vallée Poussin problem in the half-plain and in the bounded convex domains are obtained.

Keywords: convolution operator, de la Vallee Poussin problem, multiple interpolation, the half-plane.

UDC: 517.98

MSC: 58J47, 30D05, 30E10, 46E10

Original article submitted 21/XI/2014
revision submitted – 15/II/2015

DOI: 10.14498/vsgtu1355



Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026