RUS  ENG
Full version
JOURNALS // Journal of Samara State Technical University, Ser. Physical and Mathematical Sciences // Archive

Vestn. Samar. Gos. Tekhn. Univ., Ser. Fiz.-Mat. Nauki [J. Samara State Tech. Univ., Ser. Phys. Math. Sci.], 2012 Issue 4(29), Pages 48–55 (Mi vsgtu1078)

This article is cited in 2 papers

Differential Equations

The well-posedness of the local boundary value problem in a cylindric domain for the multi-dimensional wave equation

S. A. Aldashev

Aktobe State University after K. Zhubanov, Aktobe, Kazakhstan

Abstract: This paper proves the unique solvability of the local boundary value problem in a cylindric domain for the multi-dimensional wave equation, which is the generalization of the Dirichlet and Poincare problems. We also obtain the criterion for the uniqueness of the regular solution.

Keywords: multi-dimensional wave equation, cylindrical domain, local boundary value problem, solvability, uniqueness of solutions.

UDC: 517.956.3

MSC: Primary 35L05; Secondary 35R25

Original article submitted 10/V/2012
revision submitted – 12/VIII/2012

DOI: 10.14498/vsgtu1078



Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026