RUS  ENG
Full version
JOURNALS // Siberian Journal of Pure and Applied Mathematics // Archive

Vestn. Novosib. Gos. Univ., Ser. Mat. Mekh. Inform., 2011 Volume 11, Issue 2, Pages 119–122 (Mi vngu84)

The Number of Primitive Elements of the First and Second Degree of Free Non-associative Algebras over the Finite Field

A. A. Chepovskiy

M. V. Lomonosov Moscow State University

Abstract: Let $F_q$ be a finite field, $X=\{x_1,\ldots,x_n\}$ a set of free generators. Criteria for an element of the free non-associative algebra $F_q(X)$ to be primitive is obtained. Let $l$ be the degree of a primitive element. The number of primitive elements for $n = 1, 2$ and $l = 1, 2$ is found.

Keywords: free non-associative algebras, automorphisms of free algebras.

UDC: 512.554

Received: 05.03.2011



© Steklov Math. Inst. of RAS, 2026