RUS  ENG
Full version
JOURNALS // Siberian Journal of Pure and Applied Mathematics // Archive

Sib. J. Pure and Appl. Math., 2018 Volume 18, Issue 3, Pages 20–26 (Mi vngu475)

On unsolvable $Q$-theories of ring varieties

A. I. Budkin

Altai State University 61, Lenina St., Barnaul 656049, Russia

Abstract: Let $\mathcal{M}$ be any proper variety of associative rings. We prove that there exists an infinite set of varieties of associative rings containing $\mathcal{M}$ with unsolvable $Q$-theories. In particular, this result is a positive solution to the Mal'cev problem from the Kourovka Notebook on the existence of such varieties.

Keywords: quasivariety, variety, $Q$-theory, solvability, universal algebra, ring, Lee ring.

UDC: 510.53 512.55

Received: 28.04.2018

DOI: 10.33048/pam.2018.18.302


 English version:
Journal of Mathematical Sciences, 2021, 253:3, 354–359


© Steklov Math. Inst. of RAS, 2026