RUS  ENG
Full version
JOURNALS // Siberian Journal of Pure and Applied Mathematics // Archive

Sib. J. Pure and Appl. Math., 2018 Volume 18, Issue 1, Pages 54–63 (Mi vngu463)

This article is cited in 11 papers

On cycles in models of functioning of circular gene networks

V. P. Golubyatnikovab, N. E. Kirillovab

a Sobolev Institute of Mathematics SB RAS, 4, Akad. Koptyuga pr., Novosibirsk 630090, Russia
b Novosibirsk State University, 1, Pirogova St., Novosibirsk 630090, Russia

Abstract: We study a phase portrait of a nonlinear 10-dimensional dynamical system describing a model of functioning of one circular gene network. We find sufficient conditions for the existence of a cycle in this phase portrait. For a similar 18-dimensional dynamical system, we find conditions for the existence of at least two cycles in its phase portrait.

Keywords: nonlinear dynamical systems, circular gene network, phase portraits, cycles, torus principle.

UDC: 514.745.82

Received: 29.05.2017

DOI: 10.17377/PAM.2018.18.5


 English version:
Journal of Mathematical Sciences, 2020, 246:6, 779–787


© Steklov Math. Inst. of RAS, 2026