RUS  ENG
Full version
JOURNALS // Vestnik Moskovskogo Universiteta. Seriya 1. Matematika. Mekhanika // Archive

Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 2009 Number 6, Pages 26–32 (Mi vmumm917)

Mathematics

Cantor set and interpolation

O. D. Frolkina

Lomonosov Moscow State University, Faculty of Mechanics and Mathematics

Abstract: In 1998, Y. Benyamini published interesting results concerning interpolation of sequences using continuous functions $\mathbb R\to\mathbb R$. In particular, he proved that there exists a continuous function $\mathbb R\to \mathbb R$ which in some sense “interpolates” all sequences $(x_n)_{n\in\mathbb Z}\in [0,1]^{\mathbb Z}$ “simultaneously.” In 2005, R. Naulin M. and C. Uzcátegui unifyed and generalized Benyamini's results. In this paper, the case of topological spaces $X$ and $Y$ with an abelian group acting on $X$ is considered. A similar problem of “simultaneous interpolation” of all “generalized sequences” using continuous mappings $X\to Y$ is posed. Further generalizations of Naulin–Uncátegui theorems, in particular, multidimensional analogues of Benyamini's results are obtained.

Key words: $\mathfrak G$-space, continuous mapping, interpolation, Cantor set.

UDC: 515.124.55, 517.518.85

Received: 23.04.2008



Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026