Abstract:
{Properties of the large inductive dimension of a space by its normal base introduced by S. Iliadis are studied. The proposed dimension-like functions generalize both classic dimensions $\operatorname{Ind}$, $\operatorname{Ind}_0$ and relative inductive dimensions $\mathrm{I}$. It is shown what properties of the normal base characterize the fullfilment of basic classic theorems of the dimension theory (sum, subset and product theorems).
Key words:large inductive dimension, normal base, sum, subset and product theorems.