RUS  ENG
Full version
JOURNALS // Vestnik Moskovskogo Universiteta. Seriya 1. Matematika. Mekhanika // Archive

Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 2009 Number 2, Pages 53–56 (Mi vmumm860)

Short notes

Asymptotic behavior at infinity for solutions of Emden-Fowler type equations

M. D. Surnachev

Lomonosov Moscow State University, Faculty of Mechanics and Mathematics

Abstract: The semilinear equation $\Delta u=|u|^{\sigma-1}u$ is considered in the exterior of a ball in $\mathbb{R}^n$, $n\ge3$. It is shown that if the exponent $\sigma$ is greater than a “critical” value ($=\frac{n}{n-2}$), then for $x\to\infty$ the leading term of the asymptotics of any solution is a linear combination of derivatives of the fundamental solution. It is shown that solutions with the indicated leading term in asymptotics of such a type exist.

Key words: semilinear, asymptotics, Emden–Fowler equations, Kondrat'ev spaces, critical exponent, supercritical range.

UDC: 517.95

Received: 20.11.2006



Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026