RUS  ENG
Full version
JOURNALS // Vestnik Moskovskogo Universiteta. Seriya 1. Matematika. Mekhanika // Archive

Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 2010 Number 1, Pages 30–36 (Mi vmumm749)

Mathematics

The linearity of metric projection operator for subspaces of $L_p$ spaces

Yu. Yu. Druzhinin

Lomonosov Moscow State University, Faculty of Mechanics and Mathematics

Abstract: Let $Y$ be a Chebyshev subspace of a Banach space $X$. Then the single-valued metric projection operator $P_Y:X\to Y$ taking each $x\in X$ to the nearest element $y\in Y$ is well defined. Let $M$ be an arbitrary set and $\mu$ be a $\sigma$-finite measure on some $\sigma$-algebra $\Sigma$ of subsets of $M$. We give a description of Chebyshev subspaces $Y\subset L_p(M,\Sigma,\mu)$ with finite dimension and finite codimension the operator $P_Y$ is linear for.

Key words: metric projection, Chebyshev subspace, quasiorthogonal set, linearity criterion.

UDC: 517.982.256

Received: 20.10.2008



Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026