RUS  ENG
Full version
JOURNALS // Vestnik Moskovskogo Universiteta. Seriya 1. Matematika. Mekhanika // Archive

Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 2011 Number 6, Pages 26–31 (Mi vmumm732)

This article is cited in 6 papers

Mathematics

Steiner points in the space of continuous functions

B. B. Bednov

Lomonosov Moscow State University, Faculty of Mechanics and Mathematics

Abstract: The set $\mathrm{St}(f_1,f_2,f_3)$ of Steiner points is described for any three functions $f_1,f_2,f_3$ in the space $C[\mathcal{K}]$ of real-valued continuous functions on a Hausdorff compact set $\mathcal{K}$. $\mathrm{St}(f_1,f_2,f_3)$ consists of all functions $s\in C[\mathcal{K}]$ such that the sum $\|f_1-s\|+\|f_2-s\|+\|f_3-s\|$ is minimal. It is proved that the set $\mathrm{St}(f_1,f_2,f_3)$ is not empty; the triples $f_1,f_2,f_3$ having a unique Steiner point are described; a Lipschitz selection is presented for the mapping $(f_1,f_2,f_3)\to\mathrm{St}(f_1,f_2,f_3)$. These results imply the description of all real two-dimensional Banach spaces possessing the following property: the sum $\|x_1-s\|+\|x_2-s\|+\|x_3-s\|$ is equal to the semiperimeter of triangle $x_1 x_2 x_3$ for any triple $x_1,x_2,x_3$ and some of its Steiner point $s=s(x_1,x_2,x_3)$.

Key words: Steiner point, space of continuous functions.

UDC: 517.982.256+515.124.4

Received: 07.02.2011



Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026