RUS  ENG
Full version
JOURNALS // Vestnik Moskovskogo Universiteta. Seriya 1. Matematika. Mekhanika // Archive

Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 2011 Number 4, Pages 62–65 (Mi vmumm708)

This article is cited in 2 papers

Short notes

The topology of isoenergy surfaces for the Sokolov integrable case on the Lie algebra $\operatorname{so}(3,1)$

D. V. Novikov

Lomonosov Moscow State University, Faculty of Mechanics and Mathematics

Abstract: Sokolov's integrable case on $\operatorname{so}(3,1)$ is studied. This is a Hamiltonian system with two degrees of freedom where both the hamiltonian and additional integral are homogeneous polynomials of degrees $2$ and $4$, respectively. The topology of isoenergy surfaces is described for different values of parameters.

Key words: integrable Hamiltonian systems, bifurcation diagram, isoenergy surface.

UDC: 517.938.5

Received: 24.12.2010



Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026