RUS  ENG
Full version
JOURNALS // Vestnik Moskovskogo Universiteta. Seriya 1. Matematika. Mekhanika // Archive

Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 2019 Number 4, Pages 50–54 (Mi vmumm642)

This article is cited in 2 papers

Short notes

Generalized realizability for extensions of arithmetic language

A. Yu. Konovalov

Lomonosov Moscow State University, Faculty of Mechanics and Mathematics

Abstract: Let $L$ be an extension of the language of arithmetic, $V$ be a class of number-theoretical functions. A notion of the $V$-realizability for $L$-formulas is defined in such a way that indexes of functions in $V$ are used for interpreting the implication and the universal quantifier. It is proved that the semantics for $L$ based on the $V$-realizability coincides with the classic semantics iff $V$ contains all $L$-definable functions.

Key words: constructive semantics, realizability, generalized realizability, formal arithmetic.

UDC: 510.25+510.64

Received: 04.07.2018



Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026