RUS  ENG
Full version
JOURNALS // Vestnik Moskovskogo Universiteta. Seriya 1. Matematika. Mekhanika // Archive

Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 2017 Number 3, Pages 3–8 (Mi vmumm63)

This article is cited in 3 papers

Mathematics

Nonaffine differential-algebraic curves do not exist

O. V. Gerasimova, Yu. P. Razmyslov

Lomonosov Moscow State University, Faculty of Mechanics and Mathematics

Abstract: The paper outlines why the spectrum of maximal ideals ${\rm Spec}_\mathbb{C} A$ of a countably-dimensional differential $\mathbb{C}$-algebra $A$ of transcendence degree 1 without zero devisors is locally analytic, which means that for any $\mathbb{C}$-homomorphism $\psi_M : A \to \mathbb{C}$ ($M \in {\rm Spec}_{\mathbb{C}} A$) and any $a \in A$ the Taylor series $\widetilde{\psi}_M (a) \stackrel{{\rm def}}{=} \sum\limits_{m=0}^{\infty} \psi_M(a^{(m)}) \frac{z^m}{m!}$ has nonzero radius of convergence depending on the element $a \in A$.

Key words: differential algebra, affine curve, parameterisation, power series, analyticity.

UDC: 512.543.7+512.544.33+512.815.8+517.984.5+514.84

Received: 05.09.2016


 English version:
Moscow University Mathematics Bulletin, Moscow University Mеchanics Bulletin, 2017, 72:3, 89–93

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026