RUS  ENG
Full version
JOURNALS // Vestnik Moskovskogo Universiteta. Seriya 1. Matematika. Mekhanika // Archive

Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 2019 Number 2, Pages 42–46 (Mi vmumm613)

This article is cited in 2 papers

Short notes

Path connectedness of spheres in Gromov–Hausdorff space

R. A. Tsvetnikov

Lomonosov Moscow State University, Faculty of Mechanics and Mathematics

Abstract: The path connectedness of spheres in Gromov–Hausdorff space is studied. The following two assertions are proved: (1) each sphere centered at one-point space is path connected; (2) for any metric space $X$ there exists a number $R_X$ such that each sphere with the center at $X$ and radius greater than $R_X$ is path connected.

Key words: Gromov–Hausdorff metric, path connectedness.

UDC: 515.124

Received: 27.04.2018


 English version:
Moscow University Mathematics Bulletin, Moscow University Mеchanics Bulletin, 2019, 74:2, 70–74

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026