Abstract:
We consider the dynamics of a three-wheeled omni-mobile vehicle moving without control on perfectly rough horizontal plane. To analyze the effect of wheel roller inertial properties on stability of rectilinear motions of the vehicle, we model the front omni-wheel as two rigid bodies — a disk and a roller in contact with the plane — and assume that the roller does not slide. The other two wheels are modeled as rigid disks that can slide in the direction perpendicular to their planes (a non-inertial omni-wheel model). We use Tatarinov's laconic equations for systems with differential constraints to derive dynamic equations of the system. We compare them with the equations for a vehicle with three non-inertial omni-wheels and study the stability of rectilinear motions.
Key words:omni-wheel, stability, mobile vehicle, non-holonomic constraints, Tatarinov's equations.