Abstract:
In this paper we study the space $\mathcal{M}$ of all nonempty compact metric spaces considered up to isometry equipped with the Gromov–Hausdorff distance. We show that each ball in $\mathcal{M}$ with the center at the one-point space is convex in the weak sense, i.e., any two points of such a ball can be joined by a shortest curve that belongs to this ball, and is not convex in the strong sense: it is not true that every shortest curve joining the points of the ball belongs to this ball. It is also shown that a ball of sufficiently small radius with the center at a space of general position is convex in the weak sense.
Key words:Gromov–Hausdorff metric, convex in the weak sense, convex in the strong sense.