RUS  ENG
Full version
JOURNALS // Vestnik Moskovskogo Universiteta. Seriya 1. Matematika. Mekhanika // Archive

Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 2012 Number 6, Pages 51–55 (Mi vmumm548)

This article is cited in 3 papers

Short notes

Short exponential sums with a non-integer power of a natural number

P. Z. Rakhmonov

Lomonosov Moscow State University, Faculty of Mechanics and Mathematics

Abstract: An estimate for short exponential sums
$$S_c(\alpha ;x,y)=\sum_{x-y<n\le x}e(\alpha [n^c])$$
is obtained for $y\ge x^{\frac{1}{2}}\ln^A x$, $x^{1-c}y^{-1}\ln^Ax\le|\alpha|\le 0,5$, $c>2$ and $\|c\|\ge\delta$ where $A$ is a fixed positive number and $\delta=\delta (x,c,A)=\left(2^{[c]+1}-1\right)(A+2,5)\cdot\frac{\ln\ln x}{\ln x}$.

Key words: short exponential sum, Van der Corput's method, exponential integral, nontrivial estimate.

UDC: 511

Received: 28.05.2012


 English version:
Moscow University Mathematics Bulletin, Moscow University Måchanics Bulletin, 2013, 68:1, 65–68

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026