RUS  ENG
Full version
JOURNALS // Vestnik Moskovskogo Universiteta. Seriya 1. Matematika. Mekhanika // Archive

Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 2012 Number 3, Pages 58–61 (Mi vmumm500)

This article is cited in 1 paper

Short notes

Inversion complexity of self-correcting circuits for a certain sequence of Boolean functions

T. I. Krasnova

Lomonosov Moscow State University, Faculty of Mechanics and Mathematics

Abstract: It is stated that the inversion complexity $L_k^{-}(f^n_2)$ of monotone symmetric Boolean functions $f_2^n(x_1,\ldots,x_n)=\bigvee \limits_{1\leq i<j\leq n}x_i x_j$ by $k$-self-correcting schemes in the basis $B=\{\&,-\}$ for growing $n$ asymptotically equals $n\min\{k+1,p\}$ when the price of a reliable inventor $p\geq1$ and $k$ are fixed.

Key words: circuits of functional elements, monotonic symmetric Boolean functions, inversion complexity, self-correcting circuit.

UDC: 511

Received: 20.06.2011


 English version:
Moscow University Mathematics Bulletin, Moscow University Måchanics Bulletin, 2012, 67:3, 133–135

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2026