RUS  ENG
Full version
JOURNALS // Vestnik Moskovskogo Universiteta. Seriya 1. Matematika. Mekhanika // Archive

Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 2025 Number 4, Pages 65–69 (Mi vmumm4706)

Short notes

Optimal estimate of the modulus of continuity for the function conjugate to a $2\pi$-periodic Lipshitz one

A. Yu. Popovab, V. A. Okulova

a Lomonosov Moscow State University, Faculty of Mechanics and Mathematics
b Moscow Center for Fundamental and Applied Mathematics

Abstract: The problem of finding the exact upper bound of the values of the modules of continuity of conjugate functions with fixed step value $h$ is studied. The exact upper bound is taken from a set of $2\pi$-periodic functions that satisfy the Lipschitz condition of first order with a given Lipschitz constant. Åxtreme asymptotics in this problem were found with accuracy up to $O(h^3)$ for $h\rightarrow 0+$. The margin of error is estimated clearly.

Key words: conjugate function, modulus of continuity, Lipschitz condition.

UDC: 517.518.4

Received: 04.09.2024

DOI: 10.55959/MSU0579-9368-1-66-4-10


 English version:
Moscow University Mathematics Bulletin, Moscow University Måchanics Bulletin, 2025, 80:4, 261–265


© Steklov Math. Inst. of RAS, 2026