RUS  ENG
Full version
JOURNALS // Vestnik Moskovskogo Universiteta. Seriya 1. Matematika. Mekhanika // Archive

Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 2025 Number 4, Pages 8–16 (Mi vmumm4698)

Mathematics

Resolvability at a point and generalizations of compactness

A. E. Lipinab

a N.N. Krasovskii Institute of Mathematics and Mechanics, Ural Branch of the Russian Academy of Sciences, Ekaterinburg
b Institute of Natural Sciences and Mathematics, Ural Federal University

Abstract: We investigate resolvability at a point of regular Lindelöf and pseudocompact spaces. We also generalize results of E.G. Pytkeev on resolvability and resolvability at a point of regular countably compact spaces. In particular, we prove the following statement. Suppose a space $X$ is regular and every infinite subset of $X$ with cardinality smaller than $\kappa>\omega$ has a complete accumulation point. Then $X$ is $\min\{\kappa, \Delta(X)\}$-resolvable.

Key words: resolvability, resolvability at a point, pseudocompactness, countable compactness, Lindelöf spaces, extent.

UDC: 515.1

Received: 11.06.2024

DOI: 10.55959/MSU0579-9368-1-66-4-2


 English version:
Moscow University Mathematics Bulletin, Moscow University Måchanics Bulletin, 2025, 80:4, 217–226


© Steklov Math. Inst. of RAS, 2026